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The SMB equation describing nanoscale spontaneous patterning is studied both an-
alytically and numerically. In contradiction to the claim in the original SMB paper
[D. Srolovitz, A. Mazor, B. Bukiet, J. Vac. Sci. Technol. A6(4) (1988), 2371–2380.]
that some steady states are stable, we found that all the steady states are unstable. A
dynamical system reason for this is given. We also found that typical small initial data
solutions undergo an exponential growth followed by an almost linear growth. Such
a feature is consistent with the experimental data in the paper [J. Erlebacher et al., J.
Vac. Sci. Technol., A18(1) (2000), 115–120, Figure 3]. On the other hand, we never
observed the decay portion of the numerical solution reported in this paper. We invent
an elegant energy principle which supports our findings.

KEY WORDS: Nanoscale rippling, SMB equation, energy principle

1. INTRODUCTION

Spontaneous formation of nanoscale patterns on ion-bombarded surfaces has great
potentials in nano-technology.(3) The mechanism of such pattern formations is
a balance between surface roughening induced by the ion beam, and surface
relaxation due to the viscosity of the ion. A measure of the surface roughening is
the curvature of the surface, while a measure of the surface relaxation is the second
derivative of the curvature with respect to surface arc length. By considering
rippled patterns, i.e. one-dimensional patterns, the SMB (Srolovitz-Mazor-Bukiet)
equation was derived in.(4) Although relevant, the SMB equation is far more
complicated than the Cahn–Hilliard equation(2) or the Allen–Cahn equation.(1)

The SMB equation is a parabolic equation with a semi-definite coefficient. This
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Fig. 1. The graph of the dispersion relation.

semi-definite nature supports ever growing solutions. In fact, typical solutions
of SMB equation are ever growing. We invent an elegant energy principle which
clearly shows that the semi-definite coefficient can support ever growing solutions.
This ever growing nature is in agreement with experiments [Figure 3 of (3)].
Typically the amplitude of the most unstable mode undergoes an exponential
growth followed by a linear growth. Our growth curve will fit the experimental
curve perfectly if scaled by a factor of 10−3 [Figure 3 of (3)]. The transition from
exponential growth to linear growth happens around t = 10. We do not know if the
experimental curve in [Figure 3 of (3)] has a factor of 10−3 error. On the other hand,
we never observed the decay portion on the numerical growth curve in [Figure 3
of (3)]. We also studied the steady states of the SMB equation. In contradiction to
the claim in the original SMB paper(4) that some non-zero steady states are stable,
we found that all non-zero steady states are unstable. A clear dynamical system
reason for the instability will be given too. Thus the non-zero steady states are not
the final states of the ripples. No matter what initial condition to start with, the
most unstable mode soon dominates. As time goes on, the solutions develop kinks
on their spatial profiles.

Fig. 2. The intuition of a ball sliding along a well.
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Fig. 3. The spatial period of the steady states as a function of w0.

2. ANALYSIS

The Srolovitz-Mazor-Bukiet (SMB) equation can be written in the following
form

ht = −∂x [ f (hx )
(
2hx + ∂2

x [hx f (hx )]
)
], (1)

where f (z) = (1 + z2)−1/2 and h is the scaled height profile in the moving frame
of the average ripple position. Introduce u = hx , one gets

ut = −∂2
x

[
f (u)

(
2u + ∂2

x [u f (u)]
)]

, (2)

where again f (u) = (1 + u2)−1/2. For both Eqs. (2.1) and (2.2), periodic boundary
condition can be imposed,

h(t, x + L) = h(t, x), u(t, x + L) = u(t, x),

where L is some spatial period. In fact, both h and u have zero spatial mean,
∫ L

0
h dx =

∫ L

0
u dx = 0.

Fig. 4. The steady state profile for w0 = 0.99.
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Fig. 5. The steady state profile for w0 = 0.5.

Eq. (2.2) can be rewritten in the form

ut = −(1 + u2)−2uxxxx + G

where

G = 14(1 + u2)−3uux uxxx + 10(1 + u2)−3uu2
xx

+ (19 − 95u2)(1 + u2)−4u2
x uxx − (54 − 90u2)(1 + u2)−5uu4

x

− 2(1 + u2)−3/2uxx + 6(1 + u2)−5/2uu2
x .

Thus SMB is a parabolic equation with a semi-definite coefficient (1 + u2)−2.
When |u| → ∞, this coefficient approaches zero. This semi-definite nature can
support ever growing solutions. In fact, our later numerics shows that typical
solutions are indeed ever growing. The energy principle presented in the next
section clearly shows the mechanism for ever growing. The following are some
interesting identities related to the function f (u) = (1 + u2)−1/2,

u[u f ]x = − fx , [u f ]x = ux f 3, uux + fx f −3 = 0.

Fig. 6. The steady state profile for w0 = 0.01.
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Fig. 7. The initial profile is the steady state profile for u0 = 8.0 corresponding to w0 = 0.99227788
via the transform w0 = u0√

1+u2
0

. No explicit initial perturbation is added. But the numerical error will

introduce perturbations. The profile does not change much from t = 0 to t = 1. At t = 3, profile
essentially approaches zero. The initial steady profile is unstable.

2.1. An Energy Principle

Multiply the SMB (2.2) by u f (u) and integrate, one gets the energy principle:

d

dt

∫ L

0

√
1 + u2dx = 2

∫ L

0
(∂x [u f (u)])2dx −

∫ L

0
f (u)(∂2

x [u f (u)])2dx . (3)

On the right hand side, the first term is a growing force, while the second term
is a decaying force. When |u| is large, f (u) is small and the second term will be
dominated by the first term. In such a case, the solution will be ever growing. The
integral

∫ L
0

√
1 + u2dx is equivalent to the L1 norm:

∫ L

0
|u|dx <

∫ L

0

√
1 + u2 dx <

∫ L

0
(|u| + 1) dx =

∫ L

0
|u|dx + L .
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Fig. 8. Adding an explicit initial perturbation 0.1 sin( 2π
�

x) to the initial steady state profile for u0 = 8.0
in Fig. 7. The profile grows and develops a kink.

2.2. Linearization and Steady States

The zero state u = 0 is a trivial steady state. Linearization of the SMB (2.2)
at u = 0 leads to

ut = −2uxx − uxxxx .

Fig. 9. The bifurcation diagram of the fixed points where u0 = w0√
1−w2

0

, k = 2π
�

, and kc = 2π
�c

= √
2.
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Fig. 10. The amplitude growth of the most unstable mode. The domain length L = 20π , the initial
condition h(0, x) = 0.001 sin x, hmax = maxx∈[0,L] h(t, x).

Using the basic mode u ∼ eW t+ikx , one obtains the dispersion relation

W = k2(2 − k2).

See Fig. 1 for its graph. The unstable bands are k ∈ (−√
2, 0) ∪ (0,

√
2). The most

unstable modes are k = ±1. The width of the unstable bands is �k = √
2. Then

the correlation length is �c = 2π
�k = √

2π . The aspect ratio is σ = L
�c

= L√
2π

. In
general, the steady states are governed by the equation

∂2
x

[
f (u)

(
2u + ∂2

x [u f (u)]
)] = 0.

Under the periodic boundary condition, this implies that

2u + ∂2
x [u f (u)] = c

√
1 + u2

where c is a constant. By the fact that u has zero mean,

c

∫ L

0

√
1 + u2dx = 0.
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Thus c = 0, and the steady states are governed by

2u + ∂2
x [u f (u)] = 0. (4)

Introduce the new variable

w = u f (u) = u√
1 + u2

, w ∈ (−1, 1);

then

u = w√
1 − w2

, f (u) =
√

1 − w2.

Eq. (2.4) is transformed into

w′′ + 2
w√

1 − w2
= 0. (5)

Then

w′2 + V (w) = c (6)

where c is a constant of integration, and V (w) = −4
√

1 − w2. For any periodic
solution of (2.6), c < 0. An intuitive representation of the periodic solutions can
be given by a ball sliding along the well V (w) in Fig. 2. In the original SMB
paper (p. 2373 (4)), their so-called c > 0 steady states are not solutions (not steady
states). It was such so-called steady states that they claimed stable.

For the initial condition: w(0) = w0, w
′(0) = 0; c = −4

√
1 − w2

0; the spatial
period is

� = 1

2

∫ w0

−w0

dw√√
1 − w2 −

√
1 − w2

0

=
∫ w0

0

dw√√
1 − w2 −

√
1 − w2

0

.

Numerical calculation shows that for w0 ∈ (0, 1), � is a decreasing function of w0,
(Fig. 3). When w0 → 0, Eq. (2.5) reduces to

w′′ + 2w = 0.

The period of the solutions to this equation is always
√

2π . Thus

lim
w0→0

� =
√

2π = �c (correlation length defined above).

The conclusion is that the spatial period of the steady states belongs to the interval
� ∈ (�1, �c) where �1 ≈ 2.4 and �c = √

2π , and the wave length of the unstable
modes of u = 0 belongs to the interval � = 2π

k ∈ (�c,+∞). The two intervals have
the common boundary point �c. Figs. 4–6 are some of the steady state profiles.
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Fig. 11. Profile evolution of the most unstable mode in Fig. 10.

3. NUMERICS

Numerically we found that all the steady states are unstable. Figs. 7–8 show
some of the profile evolutions. Kinks are developed during the evolutions. For each
of the profile evolutions, we choose L = � (the spatial period of the steady state).
The initial perturbations also have the same spatial period L = �. The spatial
period here only supports the stable modes of u = 0. Posing the SMB (2.2) on
this spatial period L = �, u = 0 is a stable fixed point. The other nontrivial fixed
point should be unstable. For different �(k = 2π

�
), the branch of the nontrivial fixed

points in fact bifurcates from the u = 0 branch. See Fig. 9 for an illustration.
Next we choose L = 2π and solve the original form (2.1) of SMB. We choose

the initial condition

h(0, x) = 0.001 cos x .

This corresponds to the most unstable mode of h = 0. The amplitude of the solution
undergoes an exponential growth followed by a linear growth. See Fig. 10. If we
rescale it by 10−3, Fig. 10 will fit perfectly with the experimental data in [Figure
3 of (3)]. The transition time from exponential growth to linear growth happens
around t = 10 and is in agreement with the experiment too. We do not know if
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Fig. 12. Evolution of the solution starting from a small initial condition h(0, x) = 0.1 sin(0.1x) in a
large aspect ratio domain.

the experimental data above have a scaling error. On the other hand, we never
observed the decay portion of the numerical solution in [Figure 3 of (3)]. Figure 11
shows the evolution of the profiles.

In the large aspect ratio case L = 20π (σ = L
�c

= 10
√

2), starting from a
small arbitrary initial condition, the most unstable mode (k = 1) of h = 0 quickly
dominates, later on kinks are developed. See Fig. 12.

When the aspect ratio is decreased to less than
√

2, the k = 1 unstable mode
of h = 0 can not be supported by the spatial domain. The next most unstable mode
will replace k = 1 and behaves exactly the same as the k = 1-most unstable mode
above. For example, let L = 6

5π (σ = 3
5

√
2), the most unstable mode of h = 0 is

k = 6
5 . The k = 12

5 mode will be stable. We start with the k = 12
5 stable mode

h(0, x) = 0.5 sin(12x/5). First the mode decays to near zero. Then comupter error
picks up the most unstable k = 6

5 mode which grows again. See Fig. 13. Notice
the development of kinks.

Of course, when the aspect ratio is less than 1, all modes of h = 0 are stable.
Some of such spatial domains support other nontrivial steady states which are all
unstable as shown above.
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Fig. 13. The case of a domain which cannot support k = 1 most unstable mode. Specifically L = 6
5 π ,

starting from a k = 12/5 stable mode, when the mode decays near zero, the computer error picks up
the most unstable mode k = 6

5 which grows again.

4. CONCLUSION

Our main interest here is to solve the SMB equation. Our main finding is that
typical solutions of the SMB equation are ever growing. The ever growing nature
is in agreement with the experimental data [Figure 3 of (3)]. We also find that all
the nontrivial steady states are unstable. Therefore, saturations to steady states are
impossible.
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